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Dielectric constant of silver-thermosetting 
polyester composites 

S. H. KWAN, F. G. SHIN, W. L. TSUI 
Department of App/ied Science, Hong Kong Polytechnic, Kowloon, Hong Kong 

The dielectric constant of a conductor-insulator composite is measured and no 
percolation threshold is observed up to V = 45%, where V is the volume fraction of 
conducting filler. The composite is fabricated by dispersing silver-coated glass spheres 
in unsaturated polyester. It is found that the dielectric constant varies smoothly as 
(1 - -  V)-3 within the experimental range and that this relationship may be satisfactorily 
interpreted on the basis of classical electromagnetic theory. 

1. In t roduct ion  
In a previous paper [1 ] studies on the d.c. electrical 
conduction of composites fabricated from unsatu- 
rated polyester with silver powder (SP) and silver- 
coated glass spheres (SCGS) as fillers were 
reported. It was found that SCGS samples have 
more stable current characteristics than SP 
samples. It was also pointed out there that the 
d.c. electrical behaviour of these composites is 
history dependent which suggests that some per- 
manent changes begin to occur in the composite, 
e.g. the formation of conducting filaments, once 
a current starts to flow after the switch-on voltage 
is reached. 

This investigation extends the study to the 
dielectric constant at audio frequencies of freshly 
prepared SCGS samples free from the effects of 
conditioning. A prerequisite for avoiding con- 
ditioning of the sample is to keep the applied 
voltage below its threshold value, hence a small 
a.c. voltage is used in our measurements. 

Studies of the dielectric constant of a hetero- 
geneous system having a conducting phase dis- 
persed in an insulating phase appear to have drawn 
quite some attention in the literature recently. 
The main interest seems to arise from the work of 
Fortuin and Kasteleyn [2] who point out the 
similarity between percolation and second-order 
phase transitions, and the works of Kirkpatrick 
[3, 4] who advocates a scaling hypothesis accord- 
ing to which certain transport properties, e.g. 
electrical conductivity and dielectric constant, 

of a percolating system should obey a power-law 
relationship. Experimentally and by computer 
simulation, the scaling theory is verified in many 
systems as far as electrical conductivity is con- 
cerned. It appears that the first experimental 
observation of a dielectric singularity at perco- 
lation threshold is that of Grannan et al. [5], who 
also affirm the validity of the scaling law. 

The results of dielectric constant measurements 
in our present work on freshly prepared SCGS- 
polymer samples with a volume concentration of 
the conducting phase ranging from 0% to 45% do 
not, however, exhibit any percolation threshold 
within the range, and the dielectric constant 
increases smoothly from 0% volume concentration 
to about six-fold at 45%. As typical percolation 
thresholds from percolation calculations lie far 
below 45% volume fraction, we believe that perco- 
lation effects, if any, are unimportant in our 
unconditioned samples. Traditional expressions 
such as Maxwell's formula cannot account for the 
measured values of dielectric constant towards the 
high concentration end. We have, however, in this 
paper, demonstrated that a theory based on classi- 
cal electromagnetism may be constructed for a 
two-phase heterogeneous system which gives satis- 
factory agreement with the experimental data. 

2. Exper imenta l  results 
The materials used in this investigation as well as 
the sample preparation procedure are the same as 
in the previous study [1], except that for the 
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present purpose of dielectric measurement, silver 
epoxy was not pasted on to the samples. Samples 
with volume concentrations of silver-coated glass 
spheres up to 45% were prepared, each being 8 cm 
diameter and 1.8 mm thick, and for each volume 
concentration measured, there belonged at least 
two samples. 

The dielectric constant of each sample at room 
temperature was measured using a General Radio 
capacitance bridge at audio frequencies (60 to 
104 Hz) with a peak-to-peak voltage of about 1 V, 
a voltage below the threshold voltage of all 
samples. 

The results of the dielectric constant measure- 
ments on samples of various SCGS concentrations 
at audio frequencies are plotted in Fig. 1. Here 
the data points represent average values and, 
although not indicated, the experimental spread 
tends to be larger for higher concentrations of 
filler. (This is apparent in subsequent figures 
where experimental spreads are drawn in.) It is 
noted that: 

1. the dielectric constant for a given concen- 
tration of filler has a measurable frequency depen- 
dence and it bears a fairly linear relationship with 
log frequency, and 

2. the slope of these lines increases (in absolute 
value) with concentration and is more marked 
for higher concentrations. 

To compare with recent experimental results 
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Figure 1 Dielectric constant as a function of log 
frequency for various volume concentrations of 
SCGS filler. The data points represent average 
values. 

reported in [5], the dielectric constant at 1 kHz 
is plotted against filler volume concentration in 
Fig. 2. The absence of a "singularity" at some 
(critical) concentration within our range may be 
interpreted to mean that percolation effects in 
our freshly prepared samples are insignificant. 
Of course, one cannot exclude the possibility that 
a concentration threshold existed somewhere 
beyond 45%; if this were the case, then these 
SCGS-polyester composites had a percolation 
threshold higher than any reported, typical values 
of which are in the 15% to 25% range. 

Perhaps it is relevant to remark here that our 
inability to produce samples with concentrations 
higher than 45% was' mainly due to the high 
viscosity and poor flow characteristics of the 
resulting mix which render moulding of the sample 
very difficult. Indeed for the same reason the 
experimental spread for the dielectric constant of 
the 45%-samples is appreciably larger than for 
samples of lower concentrations, 

Coming back to Fig. 2, it was found that a 
power law of the form 

e ( v )  = %(1  - v )  -3 (1)  

gives a good fit to the experimental data. Here 
e(V) is the dielectric constant of the composite 
at volume concentration V, and ep --- e(0) is the 
dielectric constant of the unsaturated polyester 
and has an average value of 2.946 at 1 kHz. If 
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Figure 2 Dielectric constant at i kHz for vari- 
ous concentrations. The solid line depicts the 
fitting given by Equation 1, where ep = 2.946, 
the average experimental value at l kHz, is 
used. 

Equation 1 is interpreted as a scaling law, then 
the percolation threshold is at V--  100%. 

l + 2 V  
e ( V )  - 1 - v e, (2) 

3. Theoretical interpretation 
Variation of dielectric constant with volume con- 
centration of conducting filler such as that given 
by Equation 1 suggests that percolation effects 
are unimportant  in the SCGS-polyester composites 
investigated. 

It should be noted that our samples are not 
fabricated under pressure and the freshly prepared 
samples have negligible conductance if the applied 
voltage is less than their respective threshold 
voltages [1]. This suggests that the surfaces of  the 
silver-coated glass spheres may have been well 
wetted by the resin during mixing, resulting in a 
final composite with "separate particles", to use 
a terminology of Scarisbrick [6], and without the 
application of a large enough field to aid the for- 
mation of  a labyrinth of  "conducting paths", the 
particles remain quite unconnected electrically. 
These circumstances, therefore, do not favour the 
occurrence of percolation phenomena. Hence we 
at tempt  to seek for a theoretical understanding of 
Equation 1 in classical electromagnetic theory. 

Classical expressions for the calculation of  the 
effective dielectric constant for a two-phase 
heterogeneous system with a conducting phase 
include Maxwell's formula 

and its modifications [7, 8]. These formulae 
invariably predict values of  dielectric constant 
much too low in comparison with our data; for 
example, e (40%)=  3% from Equation 2, whereas 
our experimental value is - 4 . 6  %.  For low con- 
centrations, however, Equation 2 is satisfactory. 

The theory proposed here for the calculation 
of dielectric constant to higher concentrations of  
conducting filler is built on the validity of  
Equation 2 for low concentrations. We follow a 
common practice in the literature, for example, in 
[9], by considering the corresponding electrostatic 
problem. 

Consider a spherical conductor of  radius a 
sitting in an infinite matrix of an insulator of 
dielectric constant ep in the presence of an electric 
field of  strength Eo far away from the conductor. 
Take the origin to be the centre of  the sphere and 
the polar axis 0 = 0 parallel to the field direction. 
Then the potential q5 at a point (r, 0) outside the 
conductor is given by 

qS(r, 0) = -- Eo -- r cos 0 (3) 

Now consider a composite sphere of  radius 
R (R > a )  consisting of a conducting sphere of  
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radius a at its centre surrounded by an insulator of 
dielectric constant %. Supposing that its effective 
dielectric constant is el, then 4)(r, O) outside the 
composite sphere may be written as 

1 R 3 _e1_--%] 0 
r 0) = --Eo ~3 el + 2%]  (4) r c o s  

On comparing Equations 3 and 4, we get 

61 - -  6p _ a 3 

ea + 2% R 3 Wl 

= volume concentration of filler in this case 

(s) 
or, after rearrangement, 

l + 2 V t  
el - - -  % (6) 

1-I/"1 

which is the usual expression, Equation 2. 
Now we shall repeat the same calculation as 

outlined above with the original insulator replaced 
by one of dielectric constant el. If ez stands for 
the effective dielectric constant of the composite 
sphere, then the expression corresponding to 
Equation 5 is 

e 2 - -  e 1 a 3 
- - 171 ( 7 )  

e2 + 2el R 3 

which, after rearrangement, gives 

1+2V1 ( 1 + 2 V l i  2 
< -  l ~ - v ,  e l - -  t ~ _ - - - 2 - ~ - 1 %  (8 )  

where Equation 6 has been used to arrive at the 
last equality. To calculate the volume concen- 
tration, Vz, of conducting filler in this composite 
sphere of radius R, we note that the volume of the 
conductor situated at its centre is ~ a  3 and that 
the remaining volume of the sphere, of dielectric 
constant el, has effectively the following compo- 
sition: a conductor content of 4 zr(R 3 - - a  3)VI in an 
insulator of dielectric constant e p .  Thus 

4 g a 3  + 4 7 r ( R  3 - - a 3 ) g ,  

V 2 = _~7rR 3 

= V I + ( 1 - - V , ) V ,  = 1 - - ( 1 - - V , )  2 (9)  

By repeating the above procedure of replacing the 
dielectric medium successively for n times, we 
finally have 

= ( l  + 2 v ~ I n  
e n \ ~ ]  ep (10) 

V n = 1 --(1 -- V,)" ( l l )  

Equations 10 and 11 may be combined to give 
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[3 - 2 0  - v . ) ' / " ] "  
e, = e v (12) 

1 - - V ,  

after elimination of the parameter I71. Equation 1 2 
gives the effective dielectric constant, en, of a 
composite sphere having a volume fraction, V,, of 
conducting filler. When n becomes sufficiently 
large, i.e. when the composite contains a sut- 
ficiently large number of  conducting particles, e n 
approaches the limit [1/(1 - Vn)3]ev. (The math- 
ematical details involved in the calculation of this 
limit are given in the Appendix.) Bearing in mind 
the meaning of the symbols, this last result is 
identical to the experimental result of Equation 1. 

To recapitulate on the method of approach of 
this theory for the calculation of the effective 
dielectric constant, e(V), of a composite contain- 
ing a volume fraction, V, of conducting particles, 
we first start with a medium of dielectric constant 
e(0). Then particles are added to it one by one 
until the desired volume concentration of particles, 
V, is reached. As each particle is added, the 
effective dielectric constant is altered, and the 
next particle interacts with the "new" medium. 
In so doing, we have avoided the necessity of 
considering the very difficult problem of mutual 
interactions amongst particles. 

4. Discussion and conclusions 
We have investigated unconditioned SCGS-polymer 
samples in a small a.c. voltage and findings on the 
variation of dielectric constant as a function of 
both the SCGS volume fraction and frequency 
are reported in this paper. When compared with 
recent work [5], our experimental results, shown 
in Fig. 2, of dielectric constant as a function of 
volume fraction of conducting filler for a fixed 
frequency (1 kHz) does not show an expected 
threshold concentration within the range investi- 
gated (0% to 45%). Whereas Grannan et  al. 's samples 
are press-moulded [5] and hence the silver particles 
are capable of making direct contact with one 
another, each silver particle in our samples is likely 
to be encased by a film of polyester because of the 
wetting property of the resin. We believe the lack 
of direct contact between the conducting particles 
renders our heterogeneous system a non-percolative 
one. 

Our experimental dielectric constant values are 
notably higher than the theoretical values of 
Meredith and Tobias [8] for volume fractions 
beyond, say, 30%. Their prediction is, of course, 
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Figure 3a Dielectric constant at 100Hz plotted 
against volume concentration. The solid line 
~epicts the theoretical curve in which the 
~verage experimental value ep= 3.007 at 
.00Hz is used. 

based on a cubic array of  spherical conductors 
whereas our system may be considered as having 
a randomly distributed conducting phase. There- 
fore, it appears that a random distribution gives 
higher values o f  dielectric constant, or other 
conduction properties for that matter, than a 
regular array of  conductors. 

The theoretical calculation o f  dielectric con- 
stant given in the previous section is essentially 
based on the accuracy of  Equation 2 for low 
volume concentration o f  conducting filler together 
with an iteration procedure which allows the 
dielectric constant to be calculated for higher 
concentrations. The simple final expression, ident- 
ical to Equation i ,  fits our data at 1 kHz well. The 
fact that we have used Equation 1 to fit dielectric 
constant/volume fraction data at a fixed frequency 
(1 kHz), implies that we have implicitly assumed 
the relation 

ep(~) 
e(co) - (1 -- V) 3 (13) 

to hold, at least approximately, for the frequency 
range investigated. Similar remarks should also 
apply to those works in the literature where 
theoretical results arising from electrostatic calcu- 
lations are compared to measurements at fixed fre- 
quencies (usually lkHz) .  Such a comparison is 
justifiable provided that the loss peak is suffic- 

iently far away from the experimental frequency/ 
frequencies. 

That Equation 13 is a satisfactory description 
of  our data is further illustrated in Figs. 3a 
and b for 100Hz and lOkHz, where the average 
experimental values %(100 Hz) = 3.007 and 
%(10 kHz) -= 2.901 are used, respectively. In fact, 
according to Equation 13, the slopes in Fig. 1 are 
proportional to 1/(1 --  V) 3, which therefore tend 
to increase with volume concentration, as noted 
earlier in Section 2. 

The deficiency of  the theory, however, lies in 
its inability to predict anomalous effects when 
the packing of  conductors reaches a close-pack 
situation at V--74%.  In principle, the volume 
fraction of  any sample cannot go beyond this limit 
if the spherical particles are identical in size. Our 
formula fails to give any clue to an upper limit of  
this kind. Perhaps it is reIevant to remark here that 
the Rayleigh formula and the formula of  Meridith 
and Tobias are also deficient in this regard. 

Appendix 
We shall evaluate the limit of en in Equation 12 
as n tends to infinity. 

Taking the logarithm of  Equation 12, we obtain 

In en - -  = n In [3 - -2 (1  -- Vn) v"] - - I n ( 1  -- Vn) 
ep (14) 
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Figure 3b Dielectric constant at 10kHz plotted 
against volume concentration. The solid line 
depicts the theoretical curve in which the 
average experimental value ep = 2.901 at 
10kHz is used. 

As n - +  0% the  l e f t -hand  side b e c o m e s  In ( e / % )  

a n d  the  second  t e r m  o n  the  r igh t -hand  side is 

In (1 - -  V);  howeve r ,  t he  first  t e r m  on  the  r ight  is 

i n d e t e r m i n a t e ,  o f  the  fo rm oo-0, and  m a y  be 

eva lua ted  b y  L 'Hosp i t a l ' s  rule.  Thus  

l im n in [3 --  2(1 --  V) 1In ] 
n - - ~  oo 

in [ 3 -  2 ( 1 -  V) m ] 
= l im 

m - * O  El/ 

-- 2 ( 1 - -  V) m in ( 1 - -  V ) /  
= m-~01im i-3--  ~ - - - ~  / / 1 

= - - 2 I n ( I - - V )  

where  m = 1 In. 
Pu t t ing  th is  l imi t  in to  E q u a t i o n  14 yields 

5 
In - 3 In (1 - -  V) 

5p  

or e = % / ( 1  --  V) 3 w h i c h  is t he  desired result .  

Table  I gives an  idea o f  h o w  fast  e / %  app roaches  

1/(1 -- V) 3. 
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T A B L E  I 

e/ep for n = 

10 20 50 100 

10% 1.36726 1.36948 1.37083 1.37129 1.37174 
20% 1.92519 1.93886 1.94734 1.95022 1.95313 
30% 2.81226 2.86192 2.89354 2.90384 2.91545 
40% 4.3079 4.45901 4.55890 4.59383 4.62963 
45% 5.45163 5.71121 5.88546 5.94704 6.01052 
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